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1. Introduction. In a previous paper [1] certain properties of Runge-Kutta 
processes were derived. As an example of the use of these results a three stage 
implicit process was founid in which the 17 conditions necessary for fifth-order 
accuracy were satisfied. Since this was achieved by a special choice of only 12 
parameters the existence of various relationships between the equations that must 
be satisfied is suggested. 

Subsequently some of these relationships were found [2] and a set of processes 
was derived such that the process of v stages has order of accuracy p = 2v. The 
associated quadrature formula in this case is the v-point Gauss-Legendre formula. 
In this paper we shall refer to this type of integration process as a G-process. 

In a G-process the vectors g (1) g (2) ., g(V) which correspond to the different 
stages of the process are defined only implicitly and in practice they would need to 
be evaluated iteratively. The subject of the present paper, another class of implicit 
Runge-Kutta process, is based on the Radau quadrature formulas [3]. It will be 
seen that these have certain advantages over the G-processes in that the accuracy 
achieved for the same number of implicit stages is higher. 

Results proved in [1] and [2] will be assumed here and the same notations will be 
used. 

2. Processes based on Radau formulas. If c1 = a11 = a12 = = a1v = 0 then 
the equation 

E k-1 k, 
aljcjkll Ik 

is satisfied for any k. Hence if the first stage of a process is explicit this is consistent 
with the statement symbolized (in the notation of [2]) by C(t) for any t. Similarly 
if cv = 1, a1v = a2v = = avv = 0 the final stage is explicit and this is consistent 
with the statement D ( ) for any t. 

In view of these considerations we are led to consider three types of quadrature 
formulas, 

I: c, = 0, C2, C3, * I 
. Cv chosen so that B(t) for t as high as possible, 

II: c, = L1 c1, C2, . . .Cv-1 chosen so that B(t) for t as high as possible, 
III: c, 0, cv = 1, C2 , C3, I I C.-1 chosen so that B(t) for t as high as possible. 

It can be shown [3] that cl, C2, , cv are the roots of the equations 

I: (d-) {c^(1d-Vc)1} = 0, 

II: (dc) {c C1 - c)1} = 0, 
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234 J. c. BUTCHER 

III: (d ) {c '-1( 1- 1} = 0, 

respectively. 
In each case b1, b2, * , b, can be found from the linear equations B(v) and 

this implies B(2v - 1) for cases I and II or B(2v - 2) for case III. 
The existence and uniqueness of G-processes was shown in theorems 8, 9, 10 

of [2]. Corresponding results will now be stated for integration process based on the 
three types of Radau formulas. Each theorem is stated in three parts and it is to 
be understood that the values of cl, c2, , cv, b1, b2, ***, bv are chosen corre- 
sponding to the appropriate Radau formula. Also in parts I, III it is to be assumed 
that all = a12 = = a1v = O and in parts II, III that a1v = a2v = = av = 0. 

THEOREM 1. 

I: If A(2v - 1) then C(v), D(v - 1), 
II: If A(2v - 1) then C(v - 1), D(v), 

III: If A(2v - 2) then C(v - 1), D(v-1). 
THEOREM 2. 

I: Either of C(v), D(v - 1 ) implies the other and either implies A (2v - 1), 
II: Either of C(v - 1), D(v) implies the other and either implies A (2v - 1), 

III: Either of C( - 1), D(v - 1) implies the other and either implies A(2v - 2). 
THEOREM 3. 

I: C((v) or D(v - 1) defines a,j (i = 2, *v; j = 1, v * , v) uniquely, 
II: C(v - 1) or D(v) defines aij (i = 1, * v; j = 1, ** ,v- 1) uniquely, 

III: C(v - 1) or D(v - 1) defines a%j (i = 2, , v; j = 1, , v - 1) uniquely. 
The proofs of these results are almost identical with those of theorems 8, 9, 

10 of [2]. However, when Theorem 5 of [2] would be used in parts II or III of a 
proof it should be replaced by 

(1) If B(v - 1 + n), E(v - 1, 7) and a,, = a2 = = a., = 0, then C(X). 

Also when Theorem 6 of [2] would be used in parts I or III of a proof it should 
be replaced by 

(2) If B(t + v - 1), E(t, v - 1) and ai = a12 = = a,, = 0, then D(t). 

The statements (1) and (2) are proved in the same way as Theorems 5 and 6 
of [2]. 

In the rest of this paper the three types of integration processes will be referred 
to as I-processes, II-processes, or III-processes. 

For G-processes the values cl, C2, ***, c, (and hence b1, b2, ***, bp; a1l, a12, 

a,,a) could be expressed in terms of quadratic surds for v = 1, 2, , 5. For 
I-processes the same is true for v = 1, 2, 3; for II-processes for v = 2, 3; and for 
III-processes for v = 2, 3, ..., 7. In these cases the values of the parameters are 
shown in Tables 1, 2, 3 corresponding to the three types of processes. For higher v 
it seems to be more convenient to evaluate the parameters numerically. For v = 1 
there is neither a Il-process nor a Ill-process. Numerical values of the parameters 
will form the subject of a later paper. 

The I-process with v = 1 is simply Euler's process (described in [4]); that with 
v = 2 is the same as one due to Hammer and Hollingsworth [5]; that with 
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TABLE 1 

V ~~~~0 0 T_ -~~~~~~ 

V=2: 0 0 1 0 .1 
1 1 2 
3 3 3 

1 3 
4 4 

V= 3: 0 0 0 0 

9?V6 24 + / 168 - 73 V/4 6 - VA/ 
75 120 600 10 

9 - V/4 168 + 73 V/4 24 - V/4 6 + V/4 
75 600 120 10 

1 16 + VA6 16 - \/4 
9 36 36 

TABLE 2 

V= 2: ~~~~~~~1 0 1 
1 0 1 
3 1 
4 4 

V=3: 24 - V/-6 24 - 11 V/6 0 4 - \/6 
120 120 10 

24+11 V/6 24?+ /6 0 4+\/4 
120 120 10 

6-/6 6 2v6 0 1 
12 12 

16 - V/6 16 + 1/6 _ 
36 36 9 

V= 3 was previously published by the present author [1]. The III-process with 
V= 2 is the improved Euler (or Heun) method [4]; the III-process with v = 3 was 
quoted without detailed derivation by the present author [2]. 

3. The Error Term. In the same way as for G-processes, the principal error 

function hP+l E -F, where 

= -1 e =__ 

ly p! 

can be found. For I-processes and Il-processes, p = 2v- 1 while for III-processes, 
p = 2V- 2. The central elementary differentials of order 2v- 1 will be found to 
play the same type of role here as with the G-process with v- 1 stages. For the 



TAB LE 3 

v =2: 0 0 0 
1 0 1 
1 1 

v 3: 0 00 0 

010 1 

2 
fi 3 6 

v =4: 0 0 0 0 0 

5 + ?V/5- 1 15 - 7 V-5 0 5 - -\/5 
60 6 60 10 

5 - -V5 15 + 7 / 1 o 5+_ 
60 60 6 10 

1 5 - 55 ? V5 + 1 
6 12 12 

1 5 5 1 
12 12 12 12 

v=5: 0 0 0 0 0 0 

1 1 13-3\/2ii 14-3\/21 0 7- V\A 
14 9 63 126 14 

1 91 + 21-\/2 11 91 - 21X-/21 0 1 
32 576 72 576 2 

1 14+3V\2 13?3V21 1 0 7?+ 21 
14 126 63 9 14 

0 
7 ~ ~~~2 7 0 1 

?18 9 18? 

1 49 16 49 1 
20 180 45 180 20 

v = 6: 

0 0 0 0 0 0 0 

31 - W8 60- 

1 
W'+IW4'+W5-W6 'Wl'-W4'-Wds-W6 60 

1W 0 1-2 

30-8 60+4@5-6 600>/ -,7 X-o-5-6 2 

1 - W8 Wl+W4+W4+CL5....W 6 W1C04C0W76 C1 - O1+W70 0 
30 60 60 2 

30+W8' Wl1+W4-65'+W6' C'+ 1+(?7' 60+I C01-W4+-C5'+ C6' 0 1 2 
308 60 60 2 

31 +W8 0l+ W+W67 (CO1+ W4'- W5+ W6 (l1--O4'+ O5+CO6 ?l6 C?. . 1+W2 
30 60 60 2 

111 

+8 2coi+Co3 2coi'+CO3' 2col+035 2+W6 -13 0 i 
12 

30 3~~~~~~~~~~~~~~~~~~0 

236 
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TABLE 3-Continued 

[=14y2-~ -\/7- 14 +0V\7, +0 2,V/7?2V W2= 
7 4/ 2i/7 

[I= 1201"t 120/T"2 2/ 21' 2'2 = 1 

7 - 5-\/7- 7 + 5-07 2 + 5-\/7 2 - 5-\/7 
~~O3 7-5V'7 W2~3-7 5 ' 0' + 

ViC02 , C0 -0 
W3 = - 

60 
2 ) 

630 60 
@2/, @4 

120 120 

14 + _ 14 - -\7/ 22 + 17I/7 - 22 - 17 7/7 

3780 ' 3780 ' 360 2 6 
- 360 C2, 

22 - 5____ 22+5F7 1 -\/- 1 + \/7 1 
W7 = C02, C07 - 6 C02, C08 

7 
W2, 8 = W21 

60 60 90 90 j 

v = 7: 

0 0 0 0 0 0 0 0 

1 1 1 -_ 2 
C04 C01-8 W3-W5+W66 C07-(08 (?3-/5-W6 (I-8-CO1 0 

84 84 2 

04/ /03/-(5/TW6 C(1 /-84 C'7' 8 
1 -CO 9o C03 - 5 W06 0 2 

844 133 + +'56 ('J6/ a84 
C07 

-+00884 2 

1 , , 11 I I 1 
- 42 io ii oi+ i Coo Coll Co 11 20 
32 100 2 

1 ~~ ~~1 1____2_ 

Co5O5'+CO = C2/, 6 9= C07/ CO81 = 
CI C03=+C0527226 0+ 

8+4 
3 

861 84 84 2 

CA94 c= i + 0 = cog W3+5+6 W7+8 = 3+9600 , 1= 0 1+W2 
84 84 2 

8 
0 C012 =12 25 CW12 =C12 01 

- 2col' 128 2wol' 2col - 

42 l525 42 

Fl=124 
- 7-\15 124 +7V'B 

IC0 5/i5?2v _______2 l- 
1400 1400 ' j/33' 33 

413 C43 413 =54?+5V'B 4 54 - 5V'B5C 98?+27V\15 
V 

CW3 C- 1 WIW, W3 C1, 04 C W4 W 
363 363 2178 2178 1320 

98 - 27 N/T1 , =658?+199/-15h 658 -199 -/i75 
,2C0 

3276 -100x\/T1 
C 

1320 C2, 06 14520 
C6 

14520 27225 

3276-1-100v/'15 36 -4-\/15 36 +4-VT1 , 8 -VB 
=0 27225 W08 165 02 , W08 165 W2 W 60 2 

W9= 8-- A1-5 , 861 -73V/'1 co 861-f-73VT-1 ol 111 -17V/'5BW 
cg 

60 "z 
wo 

9600 ' lio 9600 ' il 640 W 

111-f-17N/T-15 51-f-2v/B15 5 1- 2 1-51 
w 

640 C0 l"- 300 102 0 
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study of the error terms of I-processes and II-processes it is convenient to classify 
the elementary differentials of an even order in a similar sort of way. 

Conisider F = { F1F2... F,} of order r = 2v and suppose that ri is not exceeded 
by any of r2, r3, ,r . F is said to be 

semi-central if ri < v, 
quasi-central if ri = v, 
bi-central if r1 < P. 

Thus if F is semi-central it is either quasi-central or bi-central but not both. 
If F is not semi-central it is neither quasi-central nor bi-central. In this case suppose 
F1 = {F1F2.. F,} and define 

(3) F' = {F1F2.. Fj F2F3... FS} }. 

In the same way as with G-processes we can form F, F', F", until F* is reached 
which is semi-central. Note, however, that if F is quasi-central then so is F' so we 
do not necessarily reach an F* which is bi-central. 

Corresponding to Theorems 11, 12, 13 of [2] we now state the principal results 
of this section. For the statements numbered I, II or III it is to be understood 
that a T-process, a 1I-process or a IIL-process is assumed. In each case v is the 
number of stages. 

THEOREM 4. 
I: If F = {f2V-l} = (v!)2[( - 1)!]2/[(2v)!(2z - 1)!], 

1I: If F = {f2V-l} 
1 

= (V )2[(v - 1)!]2/[(2v)!(2,- 1)!], 
III: If F = {f2V-2} 8 = v![( - 1) !]2(v - 2)!/[(2v- 1)!(2v - 2)!]. 
THEOREM 5. 

I: If F is semi-central, 8 = -(v!)2[(v - 1) !]2/{[(2v- 1- !]2, 
LI: If F is bi-central, 8 = (v !)2[(V - 1)!]2/{[(2v - )!]2, 

If F is quasi-central, a = - (v !)2[( - 1 ) !]2/{ [(2v- 1 ) !]2y}, 

III: If F is central, 8 = v![(v - 1 ) !]2( - 2)!/{[(2v-2) !]2- y 

THEOREM 6. 
1, 11: If F is not semi-central and F' is defined by (3) then 8 = -8', 

III: If F is non-central and F' is defined as in [2] then 8 = -5'. 
To prove Theorem 4 we write po + p1C + p2C2 + * * * + p,c' for the polynomial 

whose roots are cl, c2, * c, . We have the equations B(2v - d - 1) where d = 0 
(I or II) or d = 1 (III). That is, we have the equations 

v 

Zbck--l= l/k, k= 1,2, 2 ,2v-d- 1. 
i=l 

Also we have the equation 

2v-d 
v-d 

Multiplying the first v + 1 of these equations by po, p, *pi , pv and adding, we 
find 

po+pl/2 +p2/3 + +pv/(v+ 1) = 0. 

Similarly, 

po/2 + p1/3+ p2/4 + + pv/(v + 2) = 0, 
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Po/3 + p1/4+ P2/5 + + pv/(v + 3) = 0, 

pol(v -d) + pil/(v-d + 1 ) + P2/ (V -d + 2) + + pv [2 -d + 0.= 

We have the additional restriction ci = 0 and hence Po = 0 for cases I and III. 
Also we have cv = 1 and hence 

Po + pl + P2 + + Pv = 0 

for cases II and III. 

Eliminating po, Pl, P2, * pv in the various cases we find 

I: 6 = _ ~~~~~D(I) /Dv(I), 

II: D = L-V 

III: - = DV+1 /)DV(1 

where we have written 

2 3 - N 

3 4 
... N+ 

N N+ 1 2N-2 

2 3 
... 

+ 

1 1 1 

N 1 N 2N-2 

D ( II) 1 1 *** 1 
N + 

2 3 
... 

1 1 ... 

N-i A 2N-3 
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We also write as in [2] 

DN= 1 
1 3 

N N+1 2N -1 

In DN we subtract the last from each of the other rows and rearrange to find 

DN = (1)N+ [(N 1)!]2 DN(II) 

(2N -1)! 

In DN(1") we subtract the last from each of the other columns and rearrange to fild 

(2N - 2)! 

From these we deduce that for the II-process 

a = (v!)2[(v- 1)!]2/[(2v)!(2v - 1)!] 

and for the G-process 

= D+/D= -(V!)4/[(2V) !(2v + 1)!]. 

In DN we subtract the first row from each of the other rows and rearrange to 
find 

D - ( )N+l 

DN = N DN(+l 

which enables us to deduce that for a III-process 

a = v![(v- 1)!]2(v - 2)!/[(2v - 1)!(2v - 2)!]. 

Finally in DN(III) we subtract the last column from each of the other columns and 
rearrange to find 

DN(III (_1)N 
(N - 1)!(N 

-) 
(2N - 3)! N1 

which enables us to deduce that for the I-process 

a = -(v !)2[(v - 1 )!]2/[(2v)!(2v - 1)!]. 

The proof of Theorem 5 is analogous to the proof of Theorem 12 of [2]. It is 
easy to show that be is constant among the semi-control F of order 2v(I-processes); 
that be is constant (= C, say) among the bi-central F of order 2v and constant 
(= C2 say) among the quasi-central F of order 2v (II-processes); and that boy is 
constant among the central F of order 2v - 1 (III-processes). It remains to show 
that for II-processes C, + C2 = 0. 
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To prove this we consider the quasi-central example 

F I{fV-l{fv-l} 

for which y = 2vY. We have 

[lVo[V-1]] = E b cv-la cV-1 
i,j=l 

= Z bj(l -cjv)cjf1 (By D(v)) 
j=l 

o1 a 
20 7) 

where a0 corresponds to Fo = [f2V1] Thus 

,5 o a8= 
a0 
v 

and hence, since yo = 2v we have 

'ya = -'y080. 

The proof of Theorem 6 is analogous to the proof of Theorem 13 of [2] and need 
not be given here. 

These theorems enable us to write down the values of a and E = fl/ (r -1)! for 
the various F of order r = 2v(I or II) or r = 2v- 1 (III). Moreover, there are 
two consequences of these results which will be found useful if error estimates are 
to be made during a calculation. 

COROLLARY 1. The error vectors for I-processes and II-processes can be written in 
the forms 

(A + B)h2v + O(h2v+1) 

(A - B)h2v + O(h2v+1 ) 

where A, B each consist of terms of the form EF and no F occurs in both A and B. 
COROLLARY 2. If the error vector for the v - 1 stage G-process is 

Ch2v1 + 0(h 2) 

then the error vector for the v stage III-process is 

_ V c2v 1 +(2v 

v- 1 

4. Practical Computing Procedures. There are two situations in which the 
methods suggested here and in [2] would be worth serious consideration as the 
basis of practical computing schemes. The first is where a self-starting method is 
required and where the accuracy demanded makes a process of high order de- 
sirable. Secondly we might have equations for which the cost of computing f(y) 
for a given x value (one of the components of the y vector may be taken as x) is 
high compared with the cost of repeating this calculation with y changed but x 
unchanged. 



242 J. C. BUTCHER 

In this second situation the implicit nature of the processes is relatively less of 
an objection to their use. If the equations are linear the iterations may, in fact, be 
bypassed by the use of standard linear-algebraic techniques. 

However, even when other considerations point to the use of some Runge-Kutta 
process the difficulty of estimating the truncation error is a serious objection to this 
choice. With processes of high order, error estimates based on the methods of 
Bieberbach [6] or Lotkin [7] are difficult to apply and are likely to overestimate the 
error considerably [8]. 

We now suggest two computing procedures in which an estimate of the trun- 
cation error can be made during the calculation. Let Yi, Y2, * * * be the true result 
vectors corresponding to the point xo + h, xo + 2h, *... The first method is to 
apply a I-process to yo to find y, and then a II-process (with the same number of 
stages) to y, to find Y2 . In the first step the error committed is 

(A + B)h2v + O(h2v+1) 

and in the second 

(A - B)h2v + 0(h2v+1) 

so that the error in the estimate of Y2 will be 

(4) 2Ah2v + O(h2v+l). 

This error can be estimated by applying a II-process to y, but with the sign of h 
changed. This will estimate yo but with the error (4). Thus we can find Y2 to terms 
in h2v by subtracting this error estimate from the previously found value of Y2. 
Moreover, assuming the truncation error changes slowly we can use this same 
error estimate with Y2, y4, * recalculating it after a certain number of steps. 

Note that for the II-process with h reversed g(l), g (2), .. g(v) correspond ap- 
proximately to g(V) g(v-i) . ., g(l) already found in the forward moving I-process 
and these values may be used to start the iteration for the II-process. 

The second computing procedure uses the III-process of v stages for the basic 
method. Here the check on the truncation error can be made by applying the 
G-process of v - 1 stages over an interval already treated by the III-process. If 
the error in the III-process is 

_ V c2v-1+ (2v) 
-___ Ch2~ + 0(h2~ 

v- I 

then the error for the G-process is 

Ch2v1 + O(h 2). 

Thus if the two computations give y(III) and y(G) then the error in y(III) is approxi- 
mately given by 

1 (y(III) -y(G) 

4. Numerical Examples. To illustrate the use of the I-process and the II-process 
with v = 2 we consider the differential equation 
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ys = xy, y(0.5) = 1 

with solution y = exp 2 (x2-4 ). Using h = .1 for a I-process starting at the initial 
point we find gi = .5 and, after 5 iterations starting from g2 = 0, 92 = .5872027. 
Thus y(.6) = 1.05654020 is found and this differs from exp(0.55) = 1.05654061 
by -41.10-8. 

With the same value of h, a II-process starting from x = .6 gives gi = .6835731, 
g2 = .7874283 so that y(.7) = 1.12749389 (exp(.12) = 1.2749685), in error by 
- 296.10-8. 

To estimate the error in y(.7) we start from x = .6 with h = -.1 and use a 
II-process to estimate y(.5); gi is found to be .5876069 (3 iterations starting from 
gi = .5872027 as found during the forward step from .5 as g2) and g2 = .4988898 
so that y(.5) = 1 - 256.10-8. Subtracting - 256.10-8 from the previously found 
value of y(.7) we obtain 1.12749645 so that most of the error is now removed. 

Although in most cases the principal error function is too complicated to make 
possible an a priori error estimate, with v = 2 it is for the I-process 

?Q 3f3 - 3 {{f}f} + {2f}2- {f3}) 

and for the II-process 

72 -3f}3{ {f}f} - {2f}2 + 3 {f 

With the equation y' = xy, evaluation of the y component of these functions gives 

I: h y(x +2x2-1), 

II: h(4 y -2x2 _ 1). 

Between x = .5 and x = .7 these functions do vary somewhat but they still furnish 
reasonable error estimates if evaluated at x = .5, y = 1. For the I-process the error 
estimate is (10- /72). (-7/16) = -61.10-8 and for the II-process it is (10- /72) v 

(-23/16) = -200.10-8. Correcting the original estimates of y(.6) and y(.7) we 
obtain y(.6) = 1.05654081, y(.7) = 1.12749650 so that again most of the error is 
removed. 

An example of the use of the G-process with v = 3 was given in [2]. In this 
example the equation y' = y, y(0) = 1 was integrated from x = 0 to x = .3 in a 
single step. We now give results for the same step performed using the III-process 
with v = 4. gi = 1 was found explicitly and after 8 iterations starting with 2 = 

93 = 1 it was found that 2 = 1.0864494560, 93 = 1.2424541986. An explicit evalu- 
ation gives g4 = 1.349833887 so that y(.3) = 1.3498588040 = y using a notation 
from Section 3. The value found in [2] was y(G) = 1.3498588105 = y(I) + 65.10-10. 

Hence, the error in y(III) is approximately -4- 65.1010 = -37.10 1. Correcting 
y(III) we find y (.3) = 1.3498588077 in close agreement with exp (.3) = 1.3498588076. 

University of Canterbury 
Christchurch, New Zealand 
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